MAN Lion’s City Hybrid
Through city traffic – efficiently and with low emissions
Transport efficiency
Excellence in all areas

- More freight per truck, more payload for buses
 Low dead weight = higher payload = less energy per tonne-kilometre / person-kilometre

- More kilometres per litre diesel
 Low fuel costs and less CO2 output; less energy per tonne-kilometre / person-kilometre

- Greater safety in traffic
 Electronic assistance systems prevent accidents; new traffic information systems reduce traffic jams

- Maximum reliability
 Passengers and freight arrive reliably and punctually at their destinations; service contracts ensure high vehicle availability and calculable costs

 Greater comfort for the driver
 Sophisticated ergonomics = high concentration and alertness

- More service and flexibility
 Transport efficiency ensured by expert advice at purchase, flexible rental facilities and fleet management

MAN offers an all-embracing efficiency programme for cutting the total cost of ownership (TCO) wherever it can be attacked.
Sustainability and Environmental Protection

Social / Political Demands

- reduction of fuel consumption
- reduction of emissions (exhaust gases, noise)
- reduction of greenhouse gases (CO\(_2\))
- substitution of fossil fuels

Development Focuses

- improving efficiency of transport system

Measures

- improved driveline efficiency
- use of fuels with potential of CO\(_2\) reduction
- BTL (Biomass-to-Liquid) technology
- reduction of tractive resistances and vehicle weight
- consumption-oriented driving
- transport logistics, traffic management, improvement of infrastructure
- driver training to gain an energy-efficient driving style
- use of brake energy (recuperation)
MAN – Roadmap
Fuels and Drives

- Regenerative liquid hydrocarbons, hybrid as well on long distances
- Battery vehicles for short and medium distances (together with further optimization of batteries and regenerative fed energy supply)

- BTL for long distances
- Plug-in hybrid for short distances & ICE as range-extender

- Internal combustion engines plus
 - increased XTL – blend of diesel fuel
 - hybrid technology for city traffic
 - plug-in hybrid for short distances

- Internal combustion engines using
 - conv. diesel with bio – blends (HVO, FAME) and CNG
 - hybrid technology for city traffic

- Conventional diesel (based on crude oil) with bio – blends
- CNG
Hybrid concepts in comparison

Parallel hybrid
- ICE
- PE
- Energy storage
- Gearbox
- D

Serial hybrid
- ICE
- PE
- Energy storage
- EM
- D

Power split hybrid
- ICE
- P
- PE
- PE
- EM
- EM
- D

Legend:
- **ICE**: Internal combustion engine
- **EM**: Electric motor
- **PE**: Power electronics
- **D**: Differential gear
- **P**: Planetary gear

The diagram illustrates the different hybrid concepts, highlighting the energy flow and components involved in each type.
Overview Energy Storage Devices

UC-Technology
- high power density
- low energy density
- best efficiency
- best life cycle
- lifetime of the vehicle
- low system costs
- high safety level
- easy to maintain
- Zero emission mode for mid length period

NiMH-Batteries
- medium power density
- energy density ~90 Wh/kg
- medium efficiency
- medium cycle life
- lifetime approx. 4 ... 6 years
- high system cost
- high safety level
- proven technology
- Zero emission mode for longer periods

Li-Ion-Batteries
- high power density
- energy density ~110 Wh/kg
- good efficiency
- high cycle life
- lifetime approx. 6 ... 8 years
- high system cost
- relatively high safety level
- technology of high potential
- Zero emission mode for longer periods
History of development of MAN hybrid bus
Decades of competence and experience

Trolley hybrid
2000

DE hybrid (NiMH battery)
2001

Fuel-cell hybrid (NiMH battery)
2004

Serial hybrid
MAN Lion's City Hybrid
UITP 2009

DE hybrid (MD flywheel)
1978

DG hybrid (gyro storage)
1975

DH hybrid (hydr. accumulator)
1985

DE hybrid (Ultracap storage)
2001

DE hybrid, optimised (Ultracap storage)
2005

Manz 2010
Hybrid Prototype IDEAS project
Successfully tested in Europe
MAN Lion’s City Hybrid
Series Version at the UITP Congress 2009
MAN Lion’s City Hybrid
Through city traffic – efficiently and with low emissions

- Reduction of CO₂
- Recuperation of brake energy
- Modular design based on series diesel bus
- Reduced consumption
- Performance like diesel bus
- Electric PTOs controlled as required
- Motor downsizing
- Drive system optimised for vehicle
- Greater ride comfort thanks to smooth moving off
- Driving solely under electric power possible
- Goal: In long term LCC below those of conventional diesel bus

Goal:
In long term LCC below those of conventional diesel bus
Innovative and attractive **Efficiency Design** – streamlined and weight-optimised

MAN series six-cylinder diesel engine (EEV) with CRTec® and **MAN PURE DIESEL®** technology for smooth running and high reliability

MAN-developed, intelligent energy management system

Start-Stop-System for pulling away from stops under electric power without exhaust gases

Two Series-E-Drives with 75 kW each at 3.000 Nm max. torque on rear axle

Neither loss of seats nor restrictions in interior compared to conventional diesel bus

High economy thanks to durable, low-cost ultracap system
MAN Lion’s City Hybrid

The main components

1. Ultracap Storage-system
2. Power electronics
3. Generator
4. EEV-Diesel-Engine
5. E-Drives
MAN Lion’s City Hybrid

The main components

Energy store / capacitors (1)
- 6 air-cooled ultracap modules, each of 24 cells,
- Max. charging/discharging power: 200 kW
- Energy content: approx. 0.5 kWh
- Voltage: 400-750 V

Power electronics (2)
- IGBT pulse inverter

Generator (3)
- High-speed, permanently excited synchronous generator
- Output: 150 kW
The main components

Diesel engine (4)

- **Type:** MAN D0836 LOH CR
- **Design:** 6-cylinder in-line
- **Installation position:** vertical, rear left (tower design)
- **Capacity:** 6.9 litres
- **Output:** 184 kW (250 hp) at 2,300 rpm
- **Torque:** 1,050 Nm at 1,200-1,750 rpm
- **Turbocharging:** two exhaust-gas turbochargers
- **Injection:** common rail
- **Exhaust-gas after-treatment:** closed particulate filter CRTec®
- **Emission standard:** EEV

Electric motors (5)

- **Two asynchronous machines arranged in parallel**
- **Output of 75 kW each**
- **Coupled by means of a summation gearbox**
Highly mature system

Proven components for public transport applications (rail and bus transport)

Modular integration in existing vehicle concept

Basis for "electro-mobility" in conjunction with more powerful energy storage systems in future

VM Int. combustion engine (D0836LOH/EEV-184kW)
LE Power electronics
EM Electric motor (generator / drive motors)
D Differential with hypoid gear stage

Energiespeicher = Energy storage unit
MAN Lion’s City Hybrid
Fuel consumption – main influences

Long-distance touring
- Drag
- Rolling resistance

Touring
- Drag
- Rolling resistance

Intercity traffic
- Acceleration/retardation
- Idling

Urban traffic
- Acceleration/retardation
- Idling
MAN Lion’s City Hybrid
Fuel consumption – attainable potential savings

Fuel savings depend on route profile

Other influences:
- Hybrid concept
- Topography
- Energy consumption share of auxiliary units
- Driver's experience
- Number of passengers
- Traffic flow/guidance
Many components located in front roof area for **favourable weight distribution**

Air inlets for UC storage system designed to **improve airflow**

Visually harmonious integration of roof hood

AeroLine in matt anodised aluminium as cladding and distinguishing feature

Discreet rear spoiler as defined air breakaway edge and visual conclusion
Aerodynamic optimisation compared to conventional hoods up to ten per cent
From mid-2010: delivery of first vehicles to customers in Europe (pre-series production vehicles):
- Munich, Germany
- Hagen, Germany
- Vienna, Austria
- Paris, France
- Barcelona, Spain
- Milan, Italy
- Vehicles in the Netherlands

Sale from IAA Nutzfahrzeuge 2010 in Hanover onwards

From 2011 onwards: delivery of first series-production vehicles
Engineering the Future – since 1758.